બુલિયન સમીકરણ $x \leftrightarrow \sim y$ નું નિષેધ વિધાન .......... ને સમતુલ્ય છે
$(\sim x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge \sim y) \vee(\sim x \wedge y)$
$(x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge y) \wedge(\sim x \vee \sim y)$
બુલીયન બહુપદી $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ એ . . . . સમાનાર્થી છે. .
આપેલ વિધાનનું સામાનર્થી પ્રેરણ લખો
" જો એક વિધેય $f$ એ બિંદુ $a$ આગળ વિકલનીય હોય તો તે બિંદુ $a$ આગળ સતત પણ હોય "
ધારોકે ક્રિયાઓ *, $\odot \in\{\wedge, \vee\}$ છે. જો $( p * q ) \odot( p \odot \sim q )$ એ નિત્યસત્ય હોય, તો ક્રમયુક્ત જોડ $(*, \odot)=$ ..............
નીચેના વિધાનો
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
પૈકી
$q \vee((\sim q) \wedge p)$ ની નિષેધ . . . . . ને તુલ્ય છે.